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Abstract 

In this study the Green’s function technique has been used to solve the solidification problem in plate geometry for 
three alternative types of boundary condition at the surface of the plate. With this method the differential equation for 
heat conduction is transformed into an integral equation with line integrals, reducing in this manner the integration to 
a solution at the boundaries of the domain. The advantage is a considerable saving of computer time. Simple forms of 
boundary condition, that is constant values of temperature TO, of heat flux density q,,, or of heat transfer coefficient h, 
are used, but the treatment can readily be extended to time dependent values. The rate laws for the advancement of the 
solidification front <and for the evolution of surface temperature (in the case of prescribed qO or h) are obtained and are 
presented in non-dimensional form. 0 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 
a thermal diffusivity 
Bi Biot number 
cP specific heat of solid 
G Green’s function 
h heat transfer coefficient 
L half-width of the slab 
n number specifying node on time scale 
p dimensionless time (Fourier number) 
~a dimensionless time to the end of solidification 
( = atElL’) 
Ph phase transformation number 
qO heat flux density 
s dimensionless coordinate 
S dimensionless shell thickness 
t time 
fE 

T 

TO 
Tf 
TW 
u 

UO 

time to the end of solidification 
temperature 
surface temperature 
melting temperature of metal 
reference temperature 

dimensionless temperature 
dimensionless surface temperature 

* Corresponding author 

x spatial coordinate 
x, shell thickness. 

Greek symbols 
6 a small positive value 
AH, heat of fusion of metal per mass unit 
E a small positive value 
rls rate constant in Neumann’s solution 
1 heat conductivity 
5 dimensionless coordinate at which heat source is lib- 
erated at p = r 
p density 
r dimensionless time at which heat source is liberated 
ats=t. 

Subscripts 
I, II, III type of boundary condition. 

1. Introduction 

The solidification rate of metals depends on various 
parameters. Its knowledge is frequently required for the 
control of solidification processes in the metallurgical 
industries. The mathematical problem is that of heat flow 
with moving phase boundary. Analytically, such a prob- 
lem can be solved only for the one-dimensional Cartesian 
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case using the boundary condition of constant surface 
temperature (Neumann’s solution). For other boundary 
conditions and other geometries (cylinder, sphere) solu- 
tions can be obtained only by numerical computation. 
Chuang et al. [l&5] have shown that heat conduction and 
mass diffusion problems involving moving phase bound- 
aries can be solved successfully applying the Green’s func- 
tion method. With this method the differential equation 
for heat conduction (or diffusion) is transformed into 
an integral equation with line integrals, reducing in this 
manner the integration to a solution at the boundaries of 
the domain. The advantage is a considerable saving of 
computer time. Although the Green’s function method 
is well known [6], from the general point of view, its 
application to moving boundary problems is not frequent 
[l-5, 77101. 

In the present study the Green’s function technique 
is applied to solve the solidification problem in plate 
geometry for three alternative types of boundary con- 
dition at the surface of the plate. Simple forms of bound- 
ary condition (constant values of r,,, qO, or h) are used, 
but the treatment can readily be extended to time depen- 
dent boundary conditions. The obtained results which are 
presented in non-dimensional form, can serve to predict 
solidification rates of pure metals (and pure compounds) 
and, in an approximate manner, also of alloys with small 
freezing range. 

2. Solidification model and starting equations 

The geometry of the solidifying material is that of a 
plate with half-thickness L, Fig. 1. Initially, there is only 
melt with its temperature at the solidification temperature 
(melting point) T,.* The heat is withdrawn at the surface 
x = 0 of the plate causing the formation of a solid layer. 
The thickness of this solid shell is x,. It is the objective of 
the work to compute the rate law of growth of the shell 
for three different types of boundary condition at the 
surface x = 0. 

The extension of the plate in the two other directions 
(y and z) is taken to be infinite. Hence, the problem is 
one-dimensional and the heat flow equation to be inte- 
grated over the solid shell (material properties are set 
constant) is 

ar a2T 
dt=a; 

with a = ,llpc,. The initial condition is 

(1) 

* In practical solidification procesesses, e.g. continuous cast- 
ing of steel, the superheat (increase of bulk temperature of the 
melt over Tf) is usually very small and disappears fast, due to 
the convection in the melt, and, consequently, it can be neglected 
in many cases. 

center line 

Tw 

/ 
To 

rf 

0 distance from surface x ---b 

Fig. 1. Geometry of the solidifying plate and temperature profile. 

t = 0, T = Tf, x, = 0. (2) 
At the solid/liquid interface, x = x,, the temperature is 
fixed at T = Tf and the enthalpy of solidification 
(enthalpy of fusion) which is released due to the growth 
of x,, has to be removed. Hence, there are two boundary 
conditions 

x = x,, T= T, (3) 

At the surface of the plate, x = 0, three boundary con- 
ditions can be used, alternatively, depending on what is 
known in the particular situation. 

Boundary condition at x = 0 of thefirst kind: The tem- 
perature T,, is specified which in reality varies with time. 
Here, only the case of constant T, is treated. Hence, the 
boundary condition of the first kind is 

x = 0, T= T,. W 
Boundary condition at x = 0 of the second kind: Alter- 
natively, the heat flux density q0 at the surface may be 
known, e.g. from the increase of the cooling water tem- 
perature in a continuous casting mold. Here, we treat the 
case of constant heat flux density. Hence, the boundary 
condition of the second kind is 

x=0, l$qu. (5b) 

Boundary condition at x = 0 of the third kind: Neither the 
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temperature nor the heat flux density at the surface may 
be specified, but a heat transfer coefficient h is known. 
We treat the case Iof constant h. Hence, the boundary 
condition of the third kind is 

x=0, i.a’=h(T--T,). (5c) 

T, is a reference temperature, e.g. that of the water emerg- 
ing from the cooling nozzles in the secondary cooling 
zone in continuous casting. 

3. Non-dimensional formulation of the problem 

The differential equation (1) together with the initial 
condition (2) and the boundary conditions (3), (4), and 
one of (5a)-(5c) represent the complete description of 
the mathematical problem. In order to obtain generalized 
results the solution is carried out in non-dimensional 
form. The non-dimensional variables partially differ in 
the treatments of the three kinds of boundary condition 
at x = 0. 

Boundary condition at x = 0 of the first kind: The 
dimensionless temperature U, time p, local coordinate s, 
and shell thickness S are chosen as follows 

T-T, 
U=----- 

Tc- To 
(6) 

p=$ 

s=r 
L (8) 

SE:. (9) 

Using equations (6:1-(9) the differential equation (1) is 
transformed to 

au a2u _=~ 
8~ a? 

(10) 

and the initial and boundary conditions (2), (5a), (3), (4) 
to 

P = 0, U=l, s:=o (11) 

s = 0, u=o (12) 

s=s, U=l (13) 

au -+‘ph,c as dp 
The ‘phase transformation number’ Ph, is given as 

Ph, = 
AH, 

cp(Tf- To) 

(14) 

(15) 

For the boundary condition of the first kind the rate law 
S@) is the ‘square root law’ S = 2q,& with the ‘rate 
constant’ Q depending only on Ph,. The results obtained 

with the Green’s function method can be checked with 
the well known Neumann’s analytical solution [6]. 

Boundary condition at x = 0 of the second kind: The 
non-dimensional variables p, s, S are the same as for the 
boundary condition of the first kind, equations (7)-(9), 
but the non-dimensional temperature U is defined in a 
different manner 

(16) 

The differential heat flow equation is identical to that for 
the boundary condition of the first kind, equation (lo), 
but the initial and boundary conditions, corresponding 
to (2) (5b), (3), (4), are 

P = 0, u=o, s=o (17) 

au s=o, -=l as 

s=s, u=o (19) 

au - z f’h,, 5 as dp 
with the ‘phase transformation number’ PhlI being 

AH,,? 
Phi, = - 

cp40L~ 

(20) 

(21) 

The boundary condition (18) at s = 0 is non-homo- 
geneous in contrast to the boundary condition of the first 
kind, equation (12). Again, the growth rate S(p) depends 
on only one non-dimensional parameter Ph,,. 

Boundary condition at x = 0 of the third kind: The non- 
dimensional variables p, s, S are again the same as for 
the boundary condition of the first kind and are given by 
equations (7))(9), but the reference temperature T, is 
used in the non-dimensional temperature U instead of 
the surface temperature. Hence, U is 

T-T, 
U=- 

T,-T,’ (22) 

The differential equation is the same as before, equa- 
tion (10). 

The initial and boundary conditions corresponding to 
(2), (5c), (3), (4) are 

p=o, U=l, s=o 

au 
s=O, -=BiU 

as 

s=s, U=l 

(23) 

(24) 

(25) 

with the ‘phase transformation number’ PhII and the 
Biot number Bi being 

Ph,,, = 
AH, 

c,(Tf- Td 
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For the boundary condition of the third kind two 
independent non-dimensional numbers Ph,,, and Bi are 
necessary to describe the growth law S(p). 

4. Green’s function method 

The Green’s functions G&p, t, r) are solutions for the 
differential equation 

ac a=G -=~ 
8~ as2 

for pbz (29) 

and can be taken to be the dimensionless temperature at 
the location s and time p due to instantaneous heat sour- 
ces released at the locations 5 (and - 5) and at time t and 
are chosen, for the present problems, in such a manner to 
fulfill, in terms of G, the boundary conditions for U at 
s = 0. The following functions are available from the 
literature, for the three different boundary conditions 
used. 

Boundary condition at s = 0 of thejrst kind: 

s=O, p>z, G=O 

1 ____ (r-0’ (s+V 
G= 

2JZ=i 
[e- 4cp-4 -e- 4~-r)]. (30) 

Boundary condition at s = 0 of the second kind: 

ac 
s=o, p>2, -=o as 

1 ~__ (3-O’ (s+V 
G= 

2&C? 
[eC4(p--r) +e- 4~-r)]. (31) 

Boundary condition at s = 0 of the third kind: 

ac 
s=O, p>~, -=BiG 

as 

1 (s-02 (.q+V 
G= 

qhF3 

[e- 4c~r)+e-4@-~1] 

_ BieB12(P-T)+Bi(~+r)erfc s+5 
~ + Bi& 
2&= 1 . (32) 

The Green’s function contain the times as p-t. Hence 
they fulfill also the differential equation 

dG a=G _= -- 
a7 at= 

forp > r. (33) 

The heat flow equation (10) can be written, using the 
variables 5, z, as 

au - 
aT 

a2u =- 
x2 

(34) 

Equations (33) and (34) are now multiplied with U and 
G, respectively. The resulting expressions are added and 

an integration is performed over 5 in the range 0 to S(p) 
and over T in the range 0 to p. In order to avoid the 
singularity at r = p, the upper integration limit of r is set 
P-E with E being a positive number infinitely close to 
zero 

p--c s 

=-I SC 0 0 

The integrands on the LHS and RHS of (35) can be 
written as 

uac + Gg = a(uG> 
at aT aT (364 

W) 

By application of the Gauss sentence equation (35) can 
be converted into an equation involving line integrals 

%(UG)dt = jR (UE-G$dr (37) 

which has to be integrated along the closed line circuit 
shown in Fig. 2. The resulting expression is 

Taking the limit for E -+ 0 and using 

(38) 

fors < S 
F_y 

j 
‘(UG),,,_, d< = 

U(s, P) 

fU(s,p) fors = S (39) 
0 

the expressions 

U(&P) = s(UG)r_p~cI d5 
j 0 

+j:m’(ug-Gq,=Odr] fors<S (4Oa) 

; UN P) = 
j 

s(UG),=,CI, d< 
0 
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I 

5- S(P) 

Fig. 2. Line circuit over which the line integrals in equation (37) 
have to be integrated. 

+[-&(u$-~~~=~d7] fors=S (40b) 

are obtained. Equation (40a) has the meaning that the 
temperature in the interior of the solid phase can be 
calculated from the temperatures and temperature gradi- 
ents at the boundaries s = 0, s = S. The mathematical 
problem is thus reduced to a problem at the boundaries 
causing the savings in computer time. Equation (40b) is 
the starting equation for determining the rate law S(p) 
of the growth of the shell. But instead of using (40b), the 
growth law S(p) can be derived also by applying equation 
(40a) at a point s = S- 6, infinitely close to s = S. 

Solution procedure: The specific equation for three 
different kinds of boundary condition at s = 0, resulting 
from (40a) and (40b), are obtained by inserting the 
boundary conditions for U at s = 0 and s = S, and for G 
at s = 0. The solution is carried out numerically. 

Boundary conditi#sn at s = 0 of the first kind: With 
U = 1 at s = S the first integral at the RHS’s of (40a) 
and (40b) can be transformed to 

s s(UG),_,Cod4 = ” G$ _ dr 
II !( > 0 5 -S(Z) 

and equations (42a) and (42b) become 

(41) 

W,p) = Fi [(I +W I-’ ($$)<-,z, d7 

P-E ac _ s o jp=S(r) dz 
1 

fors < S (42a) 

;=h~i~ (l+Ph) 
[ ’ l-’ (G3t=,, da 

P--E ac - 
s 
o jp=“‘d dz 

I 
fors = S. (42b) 

The S(p) relation is made discrete by dividing p and S in 
intervals p,,, p,, . . . ,P~-~, pn,. . . ,pN and S,,, S,, . , . ,S,,-,, 
S “,..., SN with pO=O, S,=O and pN=p--& and 
S, = S(p - E). Within each interval the solidification rate 
dS/dp is taken to be constant. Hence, the integration 
of the integrals can be performed analytically for each 
interval, and the total integral is obtained by summation. 

U&P) = (1 + f’h,) i $A) ” 
s 

G,=qz, dr 
“=I P,-I 

dz fors < S (43a) 

dz fors = S (43b) 

with 

s 
G,=,,,, dr = f[erfz, +e”l erfz, -erfz, -e”2erfz4] 

(44a) 

s ac 
~5_s~~jdr = i[e”lerfz,-e”zerfr,]. 

Boundary condition at s = 0 of the second kind: The equa- 
tions resulting from (40a) and (40b) are 

fors < S (45a) 

with the numerical forms 

fors = S (45b) 

Ws, P) = Ph,, “g, $?~,z) ” 
s 

P-E 
G,=sw dz- 

s 
G,=, dz 

P’,-1 !I 

fors < S (46a) 

fors = S. (46b) 

The analytical solutions for the integrals are 

GrEsCTj dz = - f [erfz, +e”l erfzz ferfz, +e”zerfz,] 

(47a) 
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s GE=,, dr = -PC-($-serf. 
72 Y 

Boundary condition at s = 0 of the third kind: The equa- 
tions resulting from (40a), (40b) are the same as for the 
boundary condition of the first kind except that G from 
equation (30) is replaced by G from equation (32), and 
Ph, by Ph,,,. The analytical solutions of the integrals are 

s Gr=sci, dr = - f [erfz, +e”l erfz, +erfz, +e”lerfz,] 

be% 

+~e”~[l-erfz,]+ $[erfz, +e”l erfz,l-zerfz, 
4 

(484 

dr = - k [e’l erf z2 + e”2 erf z4] 

+ Ee’5 [l -erfz,] + $erfzl. (4gb) 

The meanings of z,, z2, z3, zq, etc. are explained in 
Table 1. 

The iteration is carried out for each n, starting with 
n = 1, till the equation (43b) or (46b), respectively, is 
fulfilled within a required accuracy. Then dS/dp and S 
are determined stepwise for the following lz’s till the 
solidification is complete at S = 1. With the known rate 
law dS/dp [or S(p)] the temperature profile U&p) can 
be computed using equation (43a), or (46a), respectively. 

W’b) 
Table 1 
Meanings of abbreviations used in equations (44), (47), (48) 

5. Analytical solutions 

Before presenting the computational results obtained 
with the Green’s function technique some analytical solu- 
tions will be discussed or derived, respectively, which will 
be used for comparison. It has been mentioned in the 
introduction that the only available exact analytical solu- 
tion of the heat flow equation (1) refers to the boundary 
condition at x = 0 of the first kind, equation (Sa), yield- 
ing the square root law x, = 2s,& for the growth of 
the solid shell (Neumann’s solution). For the boundary 
condition of the second and third kind several approxi- 
mate solutions can be derived. In the context of the 
present work we treat the so-called steady-state state 
solutions. 

Neumann’s solution (boundary condition at x = 0 of the 
first kind) : For constant temperature at x = 0 the tem- 
perature distribution in the shell and the rate law of shell 
growth are given as 

T= T0+[g]erf(*) (49) 

X, = 2v/,& (50) 

s,-s-, v, = ___ 
Pn -P.-- I 

Hz; 
n 

A= -V&--p,_,)-S+-S 

B= -V&-p,_,)-s,_,+s 

Y = JGT 

P A 
21 =j$+; 

z5 = -z,+’ withb=l 
26 Bi 

4A D, = -- 
H 

4B t’z=-- 
H 

A Q-- 
b 

4b2 

or in non-dimensional form, applying equations (6)-(g), 
as 

(51) 

s = 2kJ;s. (52) 
The rate constant qs is related to the phase transformation 
number Ph,, equation (15), by 

Steady-state solutions : The steady-state solutions of the 
heat flow equation (1) are obtained by setting the LHS 
in (1) equal to zero. This means that a’T/ax’ is zero 
yielding the linear temperature profile in the shell 

T= AfBx. (54) 
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The constants A and Bare determined from the boundary 
condition at x = 0 and the boundary condition T = Tf at 
x = x,. The rate law of shell growth x,(t) is then deter- 
mined from the condition (4). 

Boundary condition at x = 0 of the second kind: For the 
boundary condition (Sb) the coefficients A and B become 

A=T_4ox, f 1 

BA. 

(554 

(55b) 

The condition (4) yields 

dx,_ 40 _- 
dt A&P 

and, after integration, 

Hence, the linear time-law for shell growth is obtained. 
Using the dimensionless quantities (7)-(9), (16), (21), the 
non-dimensional temperature profile and the growth law 
become 

u=s-s (58) 

The steady-state approximation should be approached 
when the capacitive property of the shell is small 
(c$T/at + 0). This is so when cP is small or when the 
temperature stays close to Tf throughout the shell during 
the whole time of solidification., The latter is the case if 
q0 and L are small and L is large. Non-dimensionally, Ph,, 
should be large. Hence, the approximate solution should 
approach to the exact solution at large values of Ph,,. 

Boundary condition at x = 0 of the third kind: For the 
boundary condition (5~) the coefficients A and B become 

A  =  1T,+hTwx, 
;I+hx, (604 

B = NT,-- Td 
1+hx, 

The condition (4) yields 

dx,_ WTr- Tw) 
dt - p&(2 + hx,) 

and, after integration, 

(6Ob) 

(61) 

2/2(T,-T,)t /1. 

PA& h’ (62) 

Using the dimensionless quantities (7)-(9) (22), (27), 
(28) the dimensionless temperature profile and shell 
thickness become 

l+sBi 
u=- 

l+SBi (63) 

(64) 

By the same reasoning as put forward in the previous 
paragraph with respect to the boundary condition of the 
second kind this approximate solution should approach 
to the exact solution at large Ph,,, and small Bi. 

6. Computational results 

The equations (43), (46) were applied to compute the 
growth S(p), of the shell and corresponding change of 
surface temperature CI&) (for boundary condition at 

Table 2 
Material properties of iron and typical ranges for Ph and Bi 

AH, [J kg-‘] 24-l 000 
(262 000 

Tt Kl 1809 
;* [J kg-’ K-‘1 750 
I[WK-lrn-‘1 32 
a [m’s_‘] 5.7. 1o-6 

Phr 0.4-1.2 

Ph,, 0.084.12 

Ph,,, 
Bi 

0.23 
0.1-10 > 

with heat of S/y transformation) 

for To > 1000 K 
for To > 1000 K 
forT,> 1OOOK 
in metal mold 
in a continuous casting mold at a casting 
rate of 1 m min-’ 
in the secondary cooling zone of 
continuous casting machine, depending 
on water flow rate 

*Average of cP for solid iron in temperature range between Tf and To computed 
from enthalpies H of solid iron as 6 = [H(T,) - H(T,)]/(T,- To). 
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s = 0 of the second and third kind), for selected values 
of phase transformation number Phi, Phi,, or phase trans- 
formation number Phi,, and Biot number Bi, respectively. 
The material properties of iron and the typical ranges for 
Ph and Bi in industrial casting processes are indicated in 
Table 2. The rate law S/& and the surface temperature 
U,(p) were then correlated with suitable combinations of 
phase transformation number, and Biot number, and 
dimensionless time. The results can readily be applied to 
obtain also the total solidification time pE and surface 
temperature U&Q at the end of solidification by setting 
s= 1. 

Boundary condition at s = 0 of thejrst kind: Figure 3 
shows, as an example, the shell thickness S as a function 
of time p for Phi = 0.5. The numerically computed curve 
clearly is according to the square root law, S - ,,& as 
required. Figure 4 gives the relationship between S/A 
and Ph,. There is very good agreement with Neumann’s 
solution, equation (53) which is included in Fig. 4 in the 
form of the dashed curve. 

Boundary condition at s = 0 of the second kind: Two 
examples for the dependence of shell thickness S and 
surface temperature U, on time p are given in Fig. 5. For 
large values of Ph,,, S and U,, vary almost linearly with 
p, Fig. 5(a), in close agreement with the steady-state 
approximation. But at small Ph,,, S and U, increase less 
than linearly with time, Fig. 5(b). It can be shown by 
dimensional analysis that S/& and U,/ 
functions of ,,@Ph,,. Alternatively, S/ 

p are unique 

/- p and U,jS can 
be given also as functions of S/PhII. Both types of 
relationships are presented in Fig. 6. The first, Fig. 6(a), 

Heat Transfer 41 (1998) 3265-3278 

0.1 1 
l/Ph, 

Fig. 4. Dimensionless rate constant S/A as a function of phase 
transformation number Ph,. Boundary condition at s = 0 of the 
first kind. Comparison with Neumann’s solution. 

is applied if S and U,, are to be deduced as functions of 
p, and the second, Fig. 6(b), if p and U,, are to be deter- 
mined as functions of S. To facilitate the use of these 
correlations the following approximation formulae have 
been deduced for &/S and -h/U, to represent the 

0.1 012 013 014 

dimensionless time p=at/L2 

Fig. 3. Dimensionless shell thickness S as a function of dimensionless time p for a selected value of Phi. Numerical computation for 
boundary condition at s = 0 of the first kind. 
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- a) Phil=1 0 

0.8- 
A 

0.6 
1 

0.8 

0.6 

2 4 6 8 10 12 

dimensionless time p=at/L* 

ul 

i 

0.2 .g 

5 
E 

0 5 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 

dimensionless time p=at/L* 

Fig. 5. Dimensionless s:hell thickness Sand surface temperature U, as a function of dimensionless timep for two selected values of Ph,,. 
Boundary condition at s = 0 of the second kind. (a) Ph,, = 10, (b) Ph,, = 0.1. 

~~;~lO computed values, in the range on the two variables: PhII, and Bi. Two examples are 
given in Fig. 7. At large Bi (Bi + co) the boundary con- 

XJ5 ELr +0.377(1 -e-1.49Ph ) 
a!5 

dition of the third kind reduces to that of the first kind, 
-= 

s & 

-&~1?4+0.*4(l-e-~;~ 

(65) that is the surface temperature U, becomes constant and 
equal to zero (r, = T,), and Neumann’s solution is 
obeyed with the square root law S = 2q,Jp. This 

UQ& I 
(66) behavior is approached by the numerical solution for 

P/r,,, = 0.2 and Bi = 10, Fig. 7(a). At small values of Bi 
Boundary condition at s = 0 of the third kind: For this the numerical solution yields a linear S-p dependence, 
boundary condition the S-p and U,-p curves depend Fig. 7(b). It can be shown that for the boundary condition 
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0.1 1 10 

&lb, 

-- 

10 

numerical solution 

steady-state solution 

b) 

0.01 i 
0.01 

I I 1 (IllI: 0.01 
0.1 1 10 

W'4t 

Fig. 6. Dimensionless correlations for the shell thickness S and surface temperature UO. Boundary condition at s = 0 of the second 
kind. Comparison with steady-state solution. 
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1 

0.8 

0.6 

0.4 

0.2 

0 
0.1 0.2 

dimensionless time p=at/L* 

1 

0.96 

0.94 

0.92 

0.9 
5 10 15 20 25 

dimensionless time p=at/L* 

Fig. 7. Dimensionless shell thickness S and surface temperature U, as a function of dimensionless time p for two selected values of Bi 
at Ph - 0 2 Boundary condition at s = 0 of the third kind. (a) Ph,,, = 0.2, Bi = 10, (b) Phi,, = 0.2, Bi = 0.01. III - 
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Fig. 8. Dimensionless correlations for shell thickness S and surface temperature U,,. Boundary condition at s = 0 of the third kind 
Comparison with steady-state solution and Neumann’s solution. 
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Fig. 9. Dimensionless correlations for shell thickness S and surface temperature C&,. Boundary condition at s = 0 of the third kind. 
Comparison with steady-state solution and Neumann’s solution. 

of the third kind S/A and U,, are unique functions of 
Bi&, at constant value of Ph,,,. Alternatively, S/&and 

correlations are shown in Figs. 8 and 9. The dashed 
lines in Figs. 8(a) and 9(a) represent the steady-state 

U, can be given also as functions of S Bi. The obtained approximation which is approached at high Ph,,, and 
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small Bi as required. The following approximation for- 
mulae represent the numerically computed correlations 
in the range Bi& < 100 and Ph,,, > 0.1 

& = f’hm 
S 

+ L,, _e-(0.53+0.50Ph,,’ ~4,(&i& 

Bi$ 2% 
(67) 

0.35Ph,‘.64(Bi&)2 5 

1 +O.SO(l+ Phi,(‘.98)(Bi&)‘.5 

(68) 

7. Summary and conclusion 

In the present work the Green’s function method has 
been applied to the solidification problem of pure 
materials, in plate geometry, involving the boundary con- 
ditions at the surface of the first, second, and third kind. 
In this method the heat flow equation is transformed, by 
application of a suitable Green’s function, into an inte- 
gral equation which is then solved numerically with a 
finite difference scheme. The advantage compared to the 
conventional numerical methods used to solve the heat 
flow equation, is a considerable decrease in computer 
time. 

The results are presented in the form of dimensionless 
correlations for the shell thickness and surface tempera- 
ture. These correlations can be utilized to predict the 
progress of solidification for a broad range of slab thick- 
ness, material properties, and cooling conditions. The 
numerical computations were compared with certain ana- 
lytical solutions. The results for the boundary conditions 
at the surface of the first kind (r, = const) agree perfectly 
with the exact analytical solution by Neumann. The cal- 
culations for the boundary condition of the second 

(q. = const) and third kind (h = const) approach to the 
analytical solution for the steady-state behavior at high 
values of phase transformation number and low value of 
Biot number, as required. 
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